基于C++ Coroutines提案 ‘Stackless Resumable Functions’编写的协程库
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_async_channel.cpp 4.7KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189
  1. #include <chrono>
  2. #include <iostream>
  3. #include <string>
  4. #include <thread>
  5. #include <deque>
  6. #include <mutex>
  7. #include "librf/librf.h"
  8. using namespace librf;
  9. using namespace std::chrono;
  10. const size_t MAX_CHANNEL_QUEUE = 1; //0, 1, 5, 10, -1
  11. //如果使用move_only_type来操作channel失败,说明中间过程发生了拷贝操作----这不是设计目标。
  12. template<class _Ty>
  13. struct move_only_type
  14. {
  15. _Ty value;
  16. move_only_type() = default;
  17. explicit move_only_type(const _Ty& val) : value(val) {}
  18. explicit move_only_type(_Ty&& val) : value(std::forward<_Ty>(val)) {}
  19. move_only_type(const move_only_type&) = delete;
  20. move_only_type& operator =(const move_only_type&) = delete;
  21. move_only_type(move_only_type&&) = default;
  22. move_only_type& operator =(move_only_type&&) = default;
  23. };
  24. //如果channel缓存的元素不能凭空产生,或者产生代价较大,则推荐第二个模板参数使用true。从而减小不必要的开销。
  25. using string_channel_t = channel_t<move_only_type<std::string>>;
  26. //channel其实内部引用了一个channel实现体,故可以支持复制拷贝操作
  27. future_t<> test_channel_read(string_channel_t c)
  28. {
  29. using namespace std::chrono;
  30. for (size_t i = 0; i < 10; ++i)
  31. {
  32. try
  33. {
  34. //auto val = co_await c.read();
  35. auto val = co_await c; //第二种从channel读出数据的方法。利用重载operator co_await(),而不是c是一个awaitable_t。
  36. std::cout << val.value << ":";
  37. std::cout << std::endl;
  38. }
  39. catch (librf::channel_exception& e)
  40. {
  41. //MAX_CHANNEL_QUEUE=0,并且先读后写,会触发read_before_write异常
  42. std::cout << e.what() << std::endl;
  43. }
  44. co_await sleep_for(50ms);
  45. }
  46. }
  47. future_t<> test_channel_write(string_channel_t c)
  48. {
  49. using namespace std::chrono;
  50. for (size_t i = 0; i < 10; ++i)
  51. {
  52. //co_await c.write(std::to_string(i));
  53. co_await(c << std::to_string(i)); //第二种写入数据到channel的方法。因为优先级关系,需要将'c << i'括起来
  54. std::cout << "<" << i << ">:";
  55. std::cout << std::endl;
  56. }
  57. }
  58. void test_channel_read_first()
  59. {
  60. string_channel_t c(MAX_CHANNEL_QUEUE);
  61. go test_channel_read(c);
  62. go test_channel_write(c);
  63. this_scheduler()->run_until_notask();
  64. }
  65. void test_channel_write_first()
  66. {
  67. string_channel_t c(MAX_CHANNEL_QUEUE);
  68. go test_channel_write(c);
  69. go test_channel_read(c);
  70. this_scheduler()->run_until_notask();
  71. }
  72. static const int N = 1000000;
  73. void test_channel_performance_single_thread(size_t buff_size)
  74. {
  75. //1的话,效率跟golang比,有点惨不忍睹。
  76. //1000的话,由于几乎不需要调度器接入,效率就很高了,随便过千万数量级。
  77. channel_t<int, false, true> c{ buff_size };
  78. go[&]() -> future_t<>
  79. {
  80. for (int i = N - 1; i >= 0; --i)
  81. {
  82. co_await(c << i);
  83. }
  84. };
  85. go[&]() -> future_t<>
  86. {
  87. auto tstart = high_resolution_clock::now();
  88. int i;
  89. do
  90. {
  91. i = co_await c;
  92. } while (i > 0);
  93. auto dt = duration_cast<duration<double>>(high_resolution_clock::now() - tstart).count();
  94. std::cout << "channel buff=" << c.capacity() << ", w/r " << N << " times, cost time " << dt << "s" << std::endl;
  95. };
  96. this_scheduler()->run_until_notask();
  97. }
  98. void test_channel_performance_double_thread(size_t buff_size)
  99. {
  100. //1的话,效率跟golang比,有点惨不忍睹。
  101. //1000的话,由于几乎不需要调度器接入,效率就很高了,随便过千万数量级。
  102. channel_t<int, false, true> c{ buff_size };
  103. std::thread wr_th([c]
  104. {
  105. local_scheduler_t ls;
  106. GO
  107. {
  108. for (int i = N - 1; i >= 0; --i)
  109. {
  110. co_await(c << i);
  111. }
  112. };
  113. this_scheduler()->run_until_notask();
  114. });
  115. go[&]() -> future_t<>
  116. {
  117. auto tstart = high_resolution_clock::now();
  118. int i;
  119. do
  120. {
  121. i = co_await c;
  122. } while (i > 0);
  123. auto dt = duration_cast<duration<double>>(high_resolution_clock::now() - tstart).count();
  124. std::cout << "channel buff=" << c.capacity() << ", w/r " << N << " times, cost time " << dt << "s" << std::endl;
  125. };
  126. this_scheduler()->run_until_notask();
  127. wr_th.join();
  128. }
  129. void resumable_main_channel()
  130. {
  131. test_channel_read_first();
  132. std::cout << std::endl;
  133. test_channel_write_first();
  134. std::cout << std::endl;
  135. test_channel_performance_single_thread(1);
  136. test_channel_performance_single_thread(10);
  137. test_channel_performance_single_thread(100);
  138. test_channel_performance_single_thread(1000);
  139. test_channel_performance_double_thread(1);
  140. test_channel_performance_double_thread(10);
  141. test_channel_performance_double_thread(100);
  142. test_channel_performance_double_thread(1000);
  143. }
  144. int main()
  145. {
  146. resumable_main_channel();
  147. return 0;
  148. }